

LABORATORY MANUAL

MMIICCRROOPPRROOCCEESSSSOORRSS AANNDD MMIICCRROOCCOONNTTRROOLLLLEERRSS

LABORATORY

III B.Tech II-SEM (ECE)(MR18)

PREPARED BY:

MrsK.ANURADHA,ASSISTANT PROFESSOR

 Department of Electronics & Communication Engineering

 MALLAREDDY ENGINEERING COLLEGE
 (AUTONOMOUS)

Affiliated to JNTUH, Approved by AICTE

Accredited by NAAC with ‘A’ grade, Reaccredited by NBA
Maisammaguda, Dhulpally, Secunderabad-500100

 MALLA REDDY ENGINEERING COLLEGE

 (AUTONOMOUS)

III Year B.Tech. ECE-I Sem

MICROPROCESSORS AND MICROCONTROLLERS LAB Code: 80417

Course Objectives: To introduce programming skills related to microcontrollers.

List of Experiments:

1 Arithmetic operations of 8-bit numbers using 8085.

 2.Logical operations of 8-bit numbers using 8085.

3 a) Binary to BCD code conversions

 b)BCD to Binary code conversions using 8085.

4.Arithmetic logical operations of 16 bit numbers using 8086 5.Programming using arithmetic,

logical and bit manipulation instructions of 8051.

6.Program to toggle all the bits of Port P1 of 8051 continuously with 250 ms delay.

7.Program to interface seven segment display unit using 8051 8.Program to transmit/receive a

message from Microcontroller to PC serially using RS232 using 8051

 9.Program to interface Stepper Motor to rotate the motor in clockwise and anticlockwise directions

using 8051

10.Program to interface a relay using 8051.

 11.Program to interface LCD data pins to port P1 of 8051 and display a message on it.

12.Program for Traffic Light Controller using 8051

Software required: 1. GNU sim8085, MASM, Keil / μVision , Flash Magic

 Course Outcomes:

 At the end of the course, students will be able to

1.Understand and develop the 8085microprocessor based system 2.Able to program

8086microprocessor.

 3.Interface different input &output devices to Microcontroller.

Experiment No: 01

Arithmetic operations of 8-bit numbers using 8085.

 1 A ADDITION OF TWO 8 BIT NUMBERS

AIM

To perform addition of two 8 bit numbers using 8085.

ALGORITHM

1) Start the program by loading the first data into Accumulator.
2) Move the data to a register (B register).
3) Get the second data and load into Accumulator.
4) Add the two register contents.
5) Check for carry.
6) Store the value of sum and carry in memory location.
7) Terminate the program.

SOURCE CODE

MVI C, 00 Initialize C register to 00

LDA 4150 Load the value to Accumulator.

MOV B, A Move the content of Accumulator to B
register.

LDA 4151 Load the value to Accumulator.

ADD B Add the value of register B to A

JNC LOOP Jump on no carry.

INR C Increment value of register C

LOOP: STA 4152 Store the value of Accumulator (SUM).

MOV A, C Move content of register C to Acc.

STA 4153 Store the value of Accumulator (CARRY)

HLT Halt the program.

SAMPLE INPUT & OUTPUT

Input: 80 (4150)

80 (4251)

Output: 00 (4152)

01 (4153)

RESULT: Thus the program to add two 8-bit numbers was executed.

1 B SUBTRACTION OF TWO 8 BIT NUMBERS

AIM

To perform the subtraction of two 8 bit numbers using 8085.

ALGORITHM

1. Start the program by loading the first data into Accumulator.
2. Move the data to a register (B register).
3. Get the second data and load into Accumulator.
4. Subtract the two register contents.
5. Check for carry.
6. If carry is present take 2’s complement of Accumulator.
7. Store the value of borrow in memory location.
8. Store the difference value (present in Accumulator) to a memory location
9. Terminate the program.

SOURCE CODE

MVI C, 00 Initialize C to 00

LDA 4150 Load the value to Acc.

MOV B, A Move the content of Acc to B register.

LDA 4151 Load the value to Acc.

SUB B Subtract the value of register B to A

JNC LOOP Jump on no carry.

CMA Complement Accumulator contents.

INR A Increment value in Accumulator.

INR C Increment value in register C

LOOP: STA 4152 Store the value of A-reg to memory address.

MOV A, C Move contents of register C to Accumulator.

STA 4153 Store the value of Accumulator memory

HLT
 address.

Terminate the program.

SAMPLE INPUT & OUTPUT

Input: 06 (4150)

 02 (4251)

Output: 04 (4152)
 01 (4153)

RESULT :Thus the program to subtract two 8-bit numbers was executed.

1 C MULTIPLICATION OF TWO 8 BIT NUMBERS

AIM

To perform the multiplication of two 8 bit numbers using 8085.

ALGORITHM

1) Start the program by loading HL register pair with address of memory location.
2) Move the data to a register (B register).
3) Get the second data and load into Accumulator.
4) Add the two register contents.
5) Check for carry.
6) Increment the value of carry.
7) Check whether repeated addition is over and store the value of product and carry in

memory location.
8) Terminate the program.

SOURCE CODE

LOOP:

NEXT:

SAMPLE INPUT &OUTPUT

Input: FF (4150)

FF (4151)

Output: 01 (4152)

FE (4153)

RESULT

Thus the program to multiply two 8-bit numbers was executed.

MVI
MVI

D, 00
A, 00

Initialize register D to 00
Initialize Accumulator content to 00

LXI H, 4150

MOV B, M Get the first number in B - reg

INX H

MOV C, M Get the second number in C- reg.

ADD B Add content of A - reg to register B.

JNC NEXT Jump on no carry to NEXT.

INR D Increment content of register D

DCR C Decrement content of register C.

JNZ LOOP Jump on no zero to address

STA 4152 Store the result in Memory

MOV A, D Move the content of D register to Accumulator

STA 4153 Store the MSB of result in Memory

HLT Terminate the program.

1 D DIVISION OF TWO 8 BIT NUMBERS

AIM

To perform the division of two 8 bit numbers using 8085

ALGORITHM

1) Start the program by loading HL register pair with address of memory location.
2) Move the data to a register (B register).
3) Get the second data and load into Accumulator.
4) Compare the two numbers to check for carry.
5) Subtract the two numbers.
6) Increment the value of carry.
7) Check whether repeated subtraction is over and store the value of product and

carry in memory location.
8) Terminate the program.

SOURCE CODE
 LXI

MOV
MVI

H, 4150

B, M
C, 00

Get the dividend in B – reg.

Clear C – reg for quotient
INX H

MOV A, M Get the divisor in A – reg.

NEXT: CMP B Compare A - reg with register B.
 JC LOOP Jump on carry to LOOP
 SUB B Subtract A – reg from B- reg.
 INR C Increment content of register C.
 JMP NEXT Jump to NEXT

LOOP: STA 4152 Store the remainder in Memory
 MOV A, C Move the Content of C register to Accumulator
 STA 4153 Store the quotient in memory
 HLT Terminate the program.

SAMPLE INPUT & OUTPUT

Input: FF (4150)

FF (4251)

Output: 01 (4152) ---- Remainder

FE (4153) ----- Quotient

RESULT
Thus the program to divide two 8-bit numbers was executed.

QUESTIONS RELATED TO THE NEXT EXPERIMENT:

1. What is XCHG instruction?
2. What is DAD instruction?
3. Explain about SBB instruction.
4. Explain about SPHL instruction.
5. Difference between SHLD and STA.

Experiment No: 02

Logical operations of 8-bit numbers using 8085.
AIM

To write an assembly language program on Logical operations of 8-bit numbers using

8085.

LDA 2050 A <- M[2050]

ANI 0F A <- A (AND) 0F

MOV B, A B <- A

LDA 2050 A <- M[2050]

ANI F0 A <- A (AND) F0

RLC Rotate accumulator left by one bit without carry

RLC Rotate accumulator left by one bit without carry

RLC Rotate accumulator left by one bit without carry

RLC Rotate accumulator left by one bit without carry

ANA B A <- A (AND) B

STA 3050 M[3050] <- A

HLT END

Experiment No: 03

BINARY TO BCD CODE CONVERSIONS

AIM

To write an assembly language program to convert an 8 bit binary data to BCD using

8085 microprocessor .

ALGORITHM

STEP 1: Start the microprocessor
STEP 2: Clear ‘D’ and ‘E’ register to account for hundred’s and ten’s load the binary data

in Accumulator

STEP 3: Compare ‘A’ with 64 if cy = 01, go step C otherwise next step

STEP 4: Subtract 64 from (64+1) ‘A’ register

STEP 5: Increment ‘E’ register

STEP 6: Compare the register ‘A’ with ‘0A’, if cy=1, go to step 11, otherwise next step

STEP 7: Subtract (0AH) from ‘A’ register

STEP 8: Increment D register Step 9 : Go to step 7

STEP 10: Combine the units and tens to from 8 bit result

STEP 11: Save the units, tens and hundred’s in memory

STEP 12 : Stop the program execution

SOURCE CODE:

MVI E,00

MOV D,E

LDA 4200

HUND CPI 64
 JC TEN
 SUI 64
 INR E
 JMP HUND

TEN CPI 0A
 JC UNIT
 SUI 0A
 INR D
 JMP TEN

UNIT MOV 4A
 MOV A,D
 RLC

 RLC

 RLC

 RLC

 ADD

 STA

 HLT

SAMPLE INPUTS & OUTPUTS

Input: 4200 : 54

Output: 4250 : 84

RESULT

Thus the binary to BCD conversion was executed successfully

BCD TO BINARY CODE CONVERSIONS

AIM:To write an assembly language program to convert BCD data to Binary data using

8085 microprocessor

ALGORITHM

STEP 1 : Start the microprocessor
STEP 2 : Get the BCD data in accumulator and save it in register ‘E’

STEP 3 : Mark the lower nibble of BCD data in accumulator

STEP 4 : Rotate upper nibble to lower nibble and save it in register ‘B’

STEP 5 : Clear the accumulator

STEP 6 : Move 0AH to ‘C’ register

STEP 7 : Add ‘A’ and ‘B’ register

STEP 8 : Decrement ‘C’ register. If zf = 0, go to step 7

STEP 9 : Save the product in ‘B’

STEP 10 : Get the BCD data in accumulator from ‘E’ register and mark the upper nibble

STEP 11 : Add the units (A-ug) to product (B-ug)

STEP 12 : Store the binary value in memory

STEP 13 : End the program

SOURCE CODE

LDA 4200

MOV E,A

ANI F0

RLC

RLC

RLC

RLC

MOV B,A

XRA A

MVI C,0A REP

DCR C

JNZ

MOV B,A

MOV A,E

ANI 0F

ADD B

STA 4201

HLT

SAMPLE INPUTS & OUTPUTS

Input : 4200 : 84

Output: 4201 : 54

RESULT

Thus the BCD to binary conversion was executed successfully.

QUESTIONS RELATED TO THE NEXT EXPERIMENT:

1. What is a counter?
2. Explain how counters are used in loop instructions?
3. What is meant by time delay?
4. Explain how to calculate execution delay or delay sub-routine?
5. Difference between time delay in loop and nested loop?

Introduction to MASM:

MASM: (Microsoft assembler)

Run command prompt and go to Masm directory

i.e. C:\masm\

Type the program by opening an editor using Edit command

i.e. C:\masm\edit filename.asm

After typing the program assemble the program using masm command.

i.e. C:\masm\masm filename.asm;

After assembling, link the file using link command

i.e. C:\masm\link filename.obj;

Finally use debug command to execute the program.

C:\masm\debug filename .exe

-t; for single step execution

-g; for at a time execution

-I; for restarting the program execution

-d; to see the data segment

-q; to quit the execution

C:\masm\afdebug filename .exe

F1; for single step execution

g; for at a time execution

L filename .exe; to reload the program

Quit; to come out of the execute screen

Experiment No: 4

16 BIT ARITHMETIC OPERATIONS

Aim: To write an ALP to 8086 to perform 16-bit arithmetic operations in various Addressing

modes.

Tools: PC installed with MASM/TASM

Program:

.MODEL SMALL

.STACK 42H

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

OPR1 DW 4269H

OPR2 DW 1000H

ADDRES DW ?

SUBRES DW ?

MULRESLW DW ?

MULRESHW DW ?

DIVQ DW ?

DATA ENDS

CODE SEGMENT

START MOV AX, DATA

MOV DS, AX

MOV AX, 4269H ;Immediate addressing mode

ADD AX, OPR2 ;Direct addressing mode

MOV ADDRES, AX

MOV BX, OFFSET OPR1

MOV AX, [BX] ;Register base addresing mode

SUB AX, OPR2

MOV SUBRES, AX

MOV AX, OPR1

MOV BX, OPR2

MUL BX ; Register addresiing mode

MOV MULRESLW, AX ;Direct addressing mode

MOV MULRESHW, DX ;Direct addressing mode

MOV SI, OFFSET DIVQ ;Indexed addressing mode

MOV DX, 0000H

MOV AX, OPR1

MOV BX, OPR2

DIV BX

MOV [SI], AX

MOV [SI+2], DX

INT 03H

CODE ENDS

END START

END

Result:

Experiment No: 5

5 Programming using arithmetic, logical and bit manipulation instructions of 8051

ORG 00H

MOV A,#56H

MOV B,#32H

ADD A,B

MOV R0,A

MOV A,#56H

SUBB A,B

MOV R1,A

MOV A,#56H

MUL AB

MOV R2,A

MOV R3,B

MOV A,#56H

DIV AB

MOV R4,A

MOV R5,B

CPL A

MOV R6,A

ANL A,B

MOV R7,A

ORL A,B

END

6 .Program to toggle all the bits of Port P1 of 8051 continuously with 250 ms delay.

ORG 0

MOV A,#00H ;load A with 00H

BACK: MOV P1,A ;send 00H to port1

ACALL DELAY ;time delay

CPL A ;complement reg A

SJMP BACK ;keep doing this indefinitely

END ;end of asm file

DELAY:

MOV R5,#11

H3: MOV R4,#248

H2: MOV R3,#255

H1: DJNZ R3,H1

DJNZ R4,H2

DJNZ R5,H3

RET

END

7 Program to interface seven segment display unit using 8051

ORG 000H //initial starting address

START: MOV A,#00001001B // initial value of accumulator

MOV B,A

MOV R0,#0AH //Register R0 initialized as counter which counts from 10 to 0

LABEL: MOV A,B

INC A

MOV B,A

MOVC A,@A+PC // adds the byte in A to the program counters address

MOV P1,A

ACALL DELAY // calls the delay of the timer

DEC R0 //Counter R0 decremented by 1

MOV A,R0 // R0 moved to accumulator to check if it is zero in next

instruction.

JZ START //Checks accumulator for zero and jumps to START. Done to

check if counting has been finished.

SJMP LABEL

DB 3FH // digit drive pattern for 0

DB 06H // digit drive pattern for 1

DB 5BH // digit drive pattern for 2

DB 4FH // digit drive pattern for 3

DB 66H // digit drive pattern for 4

DB 6DH // digit drive pattern for 5

DB 7DH // digit drive pattern for 6

DB 07H // digit drive pattern for 7

DB 7FH // digit drive pattern for 8

DB 6FH // digit drive pattern for 9

DELAY: MOV R4,#05H // subroutine for delay

WAIT1: MOV R3,#00H

WAIT2: MOV R2,#00H

WAIT3: DJNZ R2,WAIT3

DJNZ R3,WAIT2

DJNZ R4,WAIT1

RET

END

Interfacing seven segment display to 8051.

8. Program to transmit/receive a message from Microcontroller to PC serially using RS232 using

8051

Steps to send data serially:

1.Set baud rate by loading TMOD register with the value 20H, this indicating timer 1 in mode 2 (8-

bit auto-reload) to set baud rate

2. The TH1 is loaded with proper values to set baud rate for serial data transfer

3. The SCON register is loaded with the value 50H, indicating serial mode 1, where an 8-bit data is

framed with start and stop bits

4. TR1 is set to 1 to start timer 1

5. TI is cleared by CLR TI instruction

6. The character byte to be transferred serially is written into SBUF register

7. The TI flag bit is monitored with the use of instruction JNB TI,xx to see if the character has been

transferred completely

8. To transfer the next byte, go to step 5

Program to transfer letter “D” serially at 9800baud, continuously:

MOV TMOD,#20H ; timer 1,mode 2(auto reload)

MOV TH1, #-3 ; 9600 baud rate

MOV SCON, #50H ; 8-bit, 1 stop,REN enabled

SETB TR1 ; start timer 1AGAIN:

MOV SBUF, #”D” ; letter “D” to transfer

HERE: JNB TI, HERE ; wait for the last bit

CLR TI ;clear TI for next char

SJMP AGAIN ; keep sending A

Steps to receive data serially:

1. Set baud rate by loading TMOD register with the value 20H, this indicating timer 1 in mode 2

(8-bit auto-reload) to set baud rate

2. The TH1 is loaded with proper values to set baud rate

3. The SCON register is loaded with the value 50H, indicating serial mode 1, where an 8-bit data is

framed with start and stop bits

4. TR1 is set to 1 to start timer 1

5. RI is cleared by CLR RI instruction

6. The RI flag bit is monitored with the use of instruction JNB RI,xx to see if an entire character

has been received yet

7. When RI is raised, SBUF has the byte; its contents are moved into a safe place

8. To receive next character, go to step 5

Program to receive bytes of data serially, and put them in P2, set the baud rate at 9600, 8-bit data,

and 1 stop bit:

MOV TMOD, #20H ; timer 1,mode 2(auto reload)

MOV TH1, #-3 ; 9600 baud rate

MOV SCON, #50H ; 8-bit, 1 stop, REN enabled

SETB TR1 ; start timer 1

HERE: JNB RI, HERE ; wait for char to come in

MOV A, SBUF ; saving incoming byte in A

MOV P2, A ; send to port 2

CLR RI ; get ready to receive next byte

SJMP HERE ; keep getting data

9 Program to interface Stepper Motor to rotate the motor in clockwise and anticlockwise directions

using 8051

A Stepper Motor to rotate the motor in clockwise directions

 ORG 0000H

 MOV A, #66H ; LOAD THE STEP SEQUENCE

BACK : MOV P0, A ; LOAD SEQUENCE TO PORT

 RR A ; CHANGE SEQUENCE ROTATE CLOCKWISE

 ACALL DELAY ;WAIT FOR IT

 SJMP BACK ; NOW KEEP GOING

DELAY: MOV R2, #100

H1 : MOV R3, #255

H2 : DJNZ R3, H2

 DJNZ R2, H1

 RET

 END

B Stepper Motor to rotate the motor in anticlockwise directions

 ORG 0000H

 MOV A, #66H ; LOAD THE STEP SEQUENCE

BACK : MOV P0, A ; LOAD SEQUENCE TO PORT

 RL A ; CHANGE SEQUENCE ROTATE

ANTICLOCKWISE

 ACALL DELAY ;WAIT FOR IT

 SJMP BACK ; NOW KEEP GOING

DELAY: MOV R2, #100

H1 : MOV R3, #255

H2 : DJNZ R3, H2

 DJNZ R2, H1

 RET

 END

10 Program to interface a relay using 8051

RELAY EQU P2.0

SW EQU P1.0

ORG 0000H

MAIN:CLR RELAY ;Configure inp and outp

SETB SW

UP: JNB SW,ON ;wait for switch to be pressed

CLR RELAY

ACALL DELAY

SJMP UP

ON: SETB RELAY ;Turn ON relay

ACALL DELAY

ACALL DELAY

HERE:JB SW,HERE ;wait for switch to be released

CLR RELAY ;Turn OFF relay

ACALL DELAY

ACALL DELAY

SJMP UP ;Loop

DELAY:MOV R7,#0FFH ;delay subroutine

AGAIN:MOV R6,#0FFH

DJNZ R6,$

DJNZ R7,AGAIN

RET

END

An electromechanical relay consists of three terminals namely common (COM), normally closed

(NC) and normally opened (NO) contacts. These can either get opened or closed when the relay is

in operation.

11 Program to interface LCD data pins to port P! of 8051 and display a message on it

MOV A,#38H // Use 2 lines and 5x7 matrix

ACALL CMND

MOV A,#0FH // LCD ON, cursor ON, cursor blinking ON

ACALL CMND

MOV A,#01H //Clear screen

ACALL CMND

MOV A,#06H //Increment cursor

ACALL CMND

MOV A,#82H //Cursor line one , position 2

ACALL CMND

MOV A,#3CH //Activate second line

ACALL CMND

MOV A,#49D

ACALL DISP

MOV A,#54D

ACALL DISP

MOV A,#88D

ACALL DISP

MOV A,#50D

ACALL DISP

MOV A,#0C1H //Jump to second line, position 1

ACALL CMND

MOV A,#67D

ACALL DISP

MOV A,#73D

ACALL DISP

MOV A,#82D

ACALL DISP

HERE: SJMP HERE

CMND: MOV P1,A

CLR P3.5

CLR P3.4

SETB P3.3

CLR P3.3

ACALL DELY

RET

DISP:MOV P1,A

SETB P3.5

CLR P3.4

SETB P3.3

CLR P3.3

ACALL DELY

RET

DELY: CLR P3.3

CLR P3.5

SETB P3.4

MOV P1,#0FFh

SETB P3.3

MOV A,P1

JB ACC.7,DELY

CLR P3.3

CLR P3.4

RET

END

Pin

No:
Pin Name: Description

1 Vss (Ground) Ground pin connected to system ground

2 Vdd (+5 Volt) Powers the LCD with +5V (4.7V – 5.3V)

3
VE (Contrast

V)
Decides the contrast level of display. Grounded to get maximum contrast.

4
Register

Select
Connected to Microcontroller to shift between command/data register

5 Read/Write Used to read or write data. Normally grounded to write data to LCD

6 Enable
Connected to Microcontroller Pin and toggled between 1 and 0 for data

acknowledgement

7 Data Pin 0

Data pins 0 to 7 forms a 8-bit data line. They can be connected to

Microcontroller to send 8-bit data.

These LCD’s can also operate on 4-bit mode in such case Data pin 4,5,6

and 7 will be left free.

8 Data Pin 1

9 Data Pin 2

10 Data Pin 3

11 Data Pin 4

12 Data Pin 5

13 Data Pin 6

14 Data Pin 7

15 LED Positive Backlight LED pin positive terminal

16 LED Negative Backlight LED pin negative terminal

RS (Register select)

A 16X2 LCD has two registers, namely, command and data. The register select is used to switch

from one register to other. RS=0 for command register, whereas RS=1 for data register.

Command Register: The command register stores the command instructions given to the LCD. A

command is an instruction given to LCD to do a predefined task. Examples like:

 initializing it

 clearing its screen

 setting the cursor position

 controlling display etc.

Processing for commands happens in the command register.

Data Register: The data register stores the data to be displayed on the LCD. The data is the ASCII

value of the character to be displayed on the LCD. When we send data to LCD it goes to the data

register and is processed there. When RS=1, data register is selected.

Sr.No. Hex Code Command to LCD instruction Register

1 01 Clear display screen

2 02 Return home

3 04 Decrement cursor (shift cursor to left)

4 06 Increment cursor (shift cursor to right)

5 05 Shift display right

6 07 Shift display left

7 08 Display off, cursor off

8 0A Display off, cursor on

9 0C Display on, cursor off

10 0E Display on, cursor blinking

11 0F Display on, cursor blinking

12 10 Shift cursor position to left

13 14 Shift cursor position to right

14 18 Shift the entire display to the left

15 1C Shift the entire display to the right

16 80 Force cursor to beginning (1st line)

17 C0 Force cursor to beginning (2nd line)

18 38 2 lines and 5×7 matrix

12 Program for Traffic Light Controller using 8051

 ORG OOH

HERE: MOV P0,#02H

 ACALL DELAY

 MOV P1,#01H

 MOV P2,#01H

 MOV P3,#01H

 MOV P0,#04H

ACALL DELAY1

 MOV P1,#02H

 ACALL DELAY

 MOV P0,#01H

 MOV P2,#01H

 MOV P3,#01H

 MOV P1,#04H

ACALL DELAY1

 MOV P2,#02H

 ACALL DELAY

 MOV P0,#01H

 MOV P1,#01H

 MOV P3,#01H

 MOV P2,#04H

ACALL DELAY1

 MOV P3,#02H

 ACALL DELAY

 MOV P0,#01H

 MOV P1,#01H

 MOV P2,#01H

 MOV P3,#04H

ACALL DELAY1

SJMP HERE

END

DELAY:

MOV R5,#11

H3: MOV R4,#248

H2: MOV R3,#255

H1: DJNZ R3,H1

DJNZ R4,H2

DJNZ R5,H3

RET

 END

DELAY1:

MOV R5,#02

H2: MOV R3,#255

H1: DJNZ R3,H1

DJNZ R5,H2

RET

 END

MPMC LAB MANUAL DEPARTMENT OF ECE

MALLAREDDY ENGINEERING COLLEGE (AUTONOMOUS) Page 32

	1 A ADDITION OF TWO 8 BIT NUMBERS
	AIM
	ALGORITHM
	SOURCE CODE

	1 B SUBTRACTION OF TWO 8 BIT NUMBERS
	AIM
	ALGORITHM
	SOURCE CODE

	1 C MULTIPLICATION OF TWO 8 BIT NUMBERS
	AIM
	ALGORITHM
	SOURCE CODE
	SAMPLE INPUT &OUTPUT
	RESULT

	1 D DIVISION OF TWO 8 BIT NUMBERS
	AIM
	ALGORITHM
	SOURCE CODE
	RESULT
	QUESTIONS RELATED TO THE NEXT EXPERIMENT:
	AIM (1)
	AIM (2)
	ALGORITHM (1)
	SAMPLE INPUTS & OUTPUTS
	RESULT (1)
	ALGORITHM (2)
	SOURCE CODE (1)
	SAMPLE INPUTS & OUTPUTS (1)
	RESULT (2)
	QUESTIONS RELATED TO THE NEXT EXPERIMENT: (1)
	Introduction to MASM:
	7 Program to interface seven segment display unit using 8051
	ORG 000H //initial starting address START: MOV A,#00001001B // initial value of accumulator MOV B,A MOV R0,#0AH //Register R0 initialized as counter which counts from 10 to 0 LABEL: MOV A,B INC A MOV B,A MOVC A,@A+PC // adds the byte in A ...
	DELAY: MOV R4,#05H // subroutine for delay WAIT1: MOV R3,#00H WAIT2: MOV R2,#00H WAIT3: DJNZ R2,WAIT3 DJNZ R3,WAIT2 DJNZ R4,WAIT1 RET END
	Interfacing seven segment display to 8051.
	8. Program to transmit/receive a message from Microcontroller to PC serially using RS232 using 8051
	Steps to send data serially:
	1.Set baud rate by loading TMOD register with the value 20H, this indicating timer 1 in mode 2 (8-bit auto-reload) to set baud rate
	2. The TH1 is loaded with proper values to set baud rate for serial data transfer
	3. The SCON register is loaded with the value 50H, indicating serial mode 1, where an 8-bit data is framed with start and stop bits
	4. TR1 is set to 1 to start timer 1
	5. TI is cleared by CLR TI instruction
	6. The character byte to be transferred serially is written into SBUF register
	7. The TI flag bit is monitored with the use of instruction JNB TI,xx to see if the character has been transferred completely
	8. To transfer the next byte, go to step 5
	Program to transfer letter “D” serially at 9800baud, continuously:
	MOV TMOD,#20H ; timer 1,mode 2(auto reload)
	MOV TH1, #-3 ; 9600 baud rate
	MOV SCON, #50H ; 8-bit, 1 stop,REN enabled
	SETB TR1 ; start timer 1AGAIN:
	MOV SBUF, #”D” ; letter “D” to transfer
	HERE: JNB TI, HERE ; wait for the last bit
	CLR TI ;clear TI for next char
	SJMP AGAIN ; keep sending A
	2. The TH1 is loaded with proper values to set baud rate
	3. The SCON register is loaded with the value 50H, indicating serial mode 1, where an 8-bit data is framed with start and stop bits (1)
	4. TR1 is set to 1 to start timer 1 (1)
	5. RI is cleared by CLR RI instruction
	6. The RI flag bit is monitored with the use of instruction JNB RI,xx to see if an entire character has been received yet
	7. When RI is raised, SBUF has the byte; its contents are moved into a safe place
	8. To receive next character, go to step 5
	Program to receive bytes of data serially, and put them in P2, set the baud rate at 9600, 8-bit data, and 1 stop bit:
	MOV TMOD, #20H ; timer 1,mode 2(auto reload)
	MOV TH1, #-3 ; 9600 baud rate (1)
	MOV SCON, #50H ; 8-bit, 1 stop, REN enabled
	SETB TR1 ; start timer 1
	HERE: JNB RI, HERE ; wait for char to come in
	MOV A, SBUF ; saving incoming byte in A
	MOV P2, A ; send to port 2
	CLR RI ; get ready to receive next byte
	SJMP HERE ; keep getting data
	RS (Register select)

